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1. INTRODUCTION 
     Accurate and reliable prediction of electro-thermal 

behavior of electrical conducting materials under 

different physical conditions is of utmost importance for 

the improved performance as well as integrity 

assessment of microelectronic devices. Now-a-days, it is 

of high practical importance to analyze these 

electro-thermal problems to determine the resultant 

temperature field properly. As a typical example of 

electro-thermal phenomenon, one can site 

electro-migration [1-2], which is the phenomenon of 

atomic diffusion due to current flow. When an electrical 

conducting material is subjected to a current flow, Joule 

heating is induced, which eventually leads to the 

generation of heat in the conductor. This electrical and 

thermal conduction ultimately causes thermal stress in 

the materials, which is considered to be one of the major 

reasons of metal line failure in electronic packaging. 

     The problem of heat conduction in a wire under the 

influence of current flow has been explained 

theoretically by Carslaw and Jaeger [3]. Steady 

temperature distribution near the tip of a crack in a 

homogeneous isotropic conductive plate was analyzed 

by Saka and Abe [4] under a direct current field with the 

help of path-independent integrals. Further, the analysis 

was extended by Sasagawa et al. [5] to determine the 

current density and temperature distributions near the 

corner of an angled metal line subjected to direct current 

flow. Greenwood and Williamson [6] treated the case of a  

 

 

conductor subjected to a direct current flow, in which 

temperature dependent material properties were 

considered, and showed that equipotentials were 

isothermals under the assumption that the relationship 

between the temperature and electrical potential at the 

positions of current input and output satisfied the 

condition of zero electro-thermal heat flux vector [7], 

and the remaining portion of the boundary was insulated 

both electrically and thermally. The method of 

Greenwood and Williamson was further extended by 

Jang et al. [8] to give a general solution to the coupled 

nonlinear problem of steady-state electrical and thermal 

conduction across an interface between two dissimilar 

half spaces. Wang et al. [9] also presented analytical 

solutions for the electrical and thermal conduction near 

the tip of a crack with a constant flux boundary condition 

at an infinite region. Recently, the method of Greenwood 

and Williamson was extended by Jang [10] to obtain a 

solution to the coupled nonlinear problem of steady-state 

electrical and thermal conduction across a crack in a 

conductive layer for which material properties were 

assumed to be functions of temperature. Very recently, 

introducing a new Joule heating residue vector, heat 

conduction in symmetrical electro-thermal problems has 

been analyzed under the influence of direct current 

passing through symmetrical regions of the boundary [7]. 

It has been shown that the Joule heating residue vector of 

symmetrical electro-thermal problem is related to the 

gradient of the temperature field associated with the 
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problem without Joule heating.               

     This paper presents a nonlinear analysis of a heat 

conduction-convection problem coupled with an 

electrical problem subjected to a direct current flow. The 

thermal conductivity of the heat transfer problem is 

assumed to be a function of temperature and wire 

location. The flow of electricity through the wire causes a 

distribution of electrical potential over the length of the 

wire. The energy generation term in the governing 

equation is calculated based on the distribution of 

electrical potential, thereby leading to a coupled analysis 

of heat transfer problem with electrical problem. The 

solution of the nonlinear boundary-value problem is 

obtained by transforming it into an equivalent 

initial-value problem with the help of a trial-and-error 

based iterative scheme together with the classical 

Runge-Kutta method. The results of the analysis, 

especially, the distributions of temperature, 

electro-thermal heat flux vector, etc. for the case of a 

conducting wire of dissimilar materials (Cu-Al) are 

demonstrated mainly in the form of graphs. The 

influence of different relevant parameters of interest on 

the thermal behavior of the wire is also investigated.  

 

2. MATHEMATICAL FORMULATION 

2.1 Electrical Problem 

     Ohm’s law for one dimensional potential distribution, 
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     The differential equation that governs the distribution 

of electric potential can be obtained by applying 

divergence operator on Eq. (1), which is 

 























x

J
J

xx



2

2

  (2) 

     For uniform wire and constant electrical resistivity the 

derivatives in the right hand side of the Eq. (2) can be 

neglected. Equation (2) is then reduced to the following 

Laplace’s equation 
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2.2 Thermal Problem  

     The general governing equation for heat transfer in a 

conductive wire, the surface of which losses heat by 

convection to the surrounding atmosphere (
T ) is 
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     For the present electro-thermal problem the internal 

heat generation per unit volume of the wire (g) is related 

to Joule heating caused by the current flow. For 

steady-state heat transfer in uniform wire with variable 

thermal conductivity k(x,T), subjected to Joule heating, 

the governing equation reduces to 
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     For the solution of electrical problem, the end 

conditions of the wire are simulated by the following 

relations 
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     The negative sign of the equation (6) applies to the 

wire end where current is being injected and the positive 

sign corresponds to the current outlet port. For the 

thermal problem, the temperatures at the two ends of the 

wire are assumed to be known. It is mentioned here that 

all possible physical conditions at the ends of wire can be 

successfully accommodated. 

 

2.3 Electro-Thermal Heat Flux 

     Electro-thermal heat flux of a conductive wire is 

realized as a summation of the thermal heat flux and the 

flux representing the effect of electrical heating in the 

wire. The overall heat flux vector (P) related to the 

coupled electro-thermal problem, which is also known as 

the Joule heating residue vector [7], is defined by 
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     Where, the first term in the right hand side of Eq. (7) 

is the thermal heat flux, Tgradkq    , and the second 

term reflects the corresponding effect of electrical 

heating. 

3. METHOD OF SOLUTION 

     The present non-linear steady state heat 

d  

Fig 1. Model of a conducting wire of dissimilar materials under direct current flow 
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conduction-convection boundary value problem has been 

solved numerically considering it as an initial value 

problem. The boundary-value problem is converted to its 

equivalent initial value problem by the application of a 

trial-and-error based iteration scheme. Then the initial 

value problem is solved by the classical fourth order 

Runge-Kutta method. The boundary conditions at the 

both ends of non-linear problem are satisfied by an 

iterative fashion using the standard Bisection method. A 

MATLAB
® 

based computer code was developed to solve 

the present problem. A total of 1500 nodal points have 

been considered to descritize the computational domain. 

The convergence as well as the stability of the numerical 

solution has been checked by varying the nodal points of 

the domain. 

     The available data of thermal conductivity of the two 

metals, Copper and Aluminum for a temperature range of 

200K-600K are shown graphically in figure 2 [11]. It is 

seen from the graph that thermal conductivity of Cu 

varies linearly with a small negative slope, while that of 

Al is found to be almost constant over the present 

temperature range. For the sake of present analysis, as 

observed from the available data, the thermal 

conductivities of both the materials are assumed to be 

linear functions of temperature. 

     The linear relationship of thermal conductivity of Cu 

and Al with temperature is approximated over the given 

temperature range according to the following equations, 

 

TTbakCu  075.06.42311                   (8) 

TTbak Al  033.02.24922                   (9) 

 

     Then the Eq. (5) is reduced to the following governing 

equation of electro-thermal problem with variable 

thermal conductivity 
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Here, i = 1, 2 

     The nonlinear governing differential Eq. (10) of the 

electro-thermal problem, which includes the influence of 

variable thermal conductivity, is thus developed by 

analyzing the available thermal conductivity data as a 

function of temperature for a particular range of interest.  

 

Table 1: Electrical resistivity of Copper and Aluminum at 

room temperature (300K) [12] 

 

Metal 
Electrical resistivity () 

(Ω-m) 

Copper 1.71×10
-8

 

Aluminum 2.65×10
-8

 

         

4. STATEMENT OF THE ELECTRO-THERMAL 
PROBLEM 

     A uniform conducting wire of dissimilar materials 

with diameter, d = 0.5mm is analyzed under the influence 

of constant direct current flow (I = 2A). The junction 

point of the bi-metallic wire is considered to be located at 

the mid-length position of the wire. At one end of the 

wire, current is injected and at the other end it goes out. 

The entire conducting wire (L = 0.15m) is assumed to be 

electrically insulated except for the two ends. Due to 

current injection there will be potential difference 

throughout the wire. Electric potential is related to 

current density. Current density can be calculated with 

the help of potential distribution. The boundary 

conditions for electrical problem are given in terms of 

prescribed current density.  

 

As a result of current flow in the wire, Joule heating 

occurs. Volumetric internal heat generation is calculated 

with the help of potential distribution as shown in Eq.  (5). 

The temperature distribution of the wire largely depends 

on thermal conductivities of the wire material. Thermal 

conductivity is assumed to be a function of temperature 

as well as wire location. The surface of the wire is 

assumed to transfer heat by convection to the 

surrounding environment which is at a temperature of 

Fig 2. Thermal conductivity of Cu and Al as a 

function of temperature (200~600K) 

Fig 3. Distribution of electrical potential along the 

length of the metallic conducting wires (I = 2A) 
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300K. The elevated temperature condition of the wire 

was simulated by assigning fixed temperature (318K) at 

the two ends of the wire. The convection heat transfer 

co-efficient is assumed to be constant (10 Wm
-2

K
-1

) for 

both the regions of copper and aluminum wires

Electrical resistivity of the two materials used (Cu & Al) 

are listed in Table 1. 

 

5. RESULTS OF THE ANALYSIS 

     This section describes the results of the present 

nonlinear analysis of electro thermal responses of the 

bi-metallic conducting wire (Cu-Al). Figure 3 shows the 

distribution of electric potential, which varies linearly 

with the axial location of the conductive wires. Since all 

metallic conductors obey Ohm’s law, it is obvious that 

the distribution of electric potential will be a straight line. 

But in case of the bi-metallic wire, the slope is different 

for each section of constituting metals, which is because 

of the fact that the properties are different for the two 

metals. As a result, sharp change of the slope is observed 

at the junction point of dissimilar materials. 

      Figure 4 describes the variation of the resulting 

temperature along the bi-metallic wire. In an attempt to 

compare the thermal response of the bi-metallic wire, the 

corresponding temperature distribution is presented 

together with those of the individual Al and Cu wires in 

figure 4(a). The temperatures are found to vary following 

a symmetric parabolic law for the Al and Cu wires, 

which is not the case for the bi-metallic wire. For Al and 

Cu wires, the highest temperature was found to occur at 

the mid-length position of the wires, but in case of 

bi-metallic wire (xo/L=0.5), it is shifted from the 

mid-length position towards the right side or left side 

depending on the location of the junction (see figure 

4(a)). The influence of the location of the junction point 

on the temperature distribution is illustrated in figure 

4(b). The present analysis shows that the maximum 

temperature increases with the decrease of (x0/L), that is, 

the relative length of the Cu wire decreases with respect 

to that of Al. 

     A comparison of temperature distributions within the 

wire for the case of variable and constant thermal 

conductivity shows that the difference in maximum 

temperature is quite small (0.71
o
C), which is because of 

the given temperature dependency of thermal 

conductivities of the metals for the present working 

temperature range, as shown in figure 2. However, the 

corresponding difference in temperature would be high if 

a different working temperature is considered, especially, 

very high or low temperature ranges. On the other hand, 

if the surface of the present bi-metallic wire is thermally 

insulated, the rise in temperature within the wire due to 

current flow is found to be nearly double of that observed 

with the bare wire.       

     Figure 5 shows the variation of electro-thermal heat 

flux along the length of wires. Nonlinear relationship is 

observed for all the three wires, which is because of the 

fact that electro-thermal heat flux is directly proportional 

to the gradient of square of electric potential, as shown in 

Eq. (7). The distribution of the heat flux along the length 

of the bi-metallic wire shows that the electro-thermal 

heat flux vector is lower in magnitude compared to those 

of the individual wires. The location of the junction point 

is however clearly reflected by the distribution of the 

heat flux for the bi-metallic wire. The overall magnitude 

of the present electro-thermal heat flux is found to be 

several orders higher when compared with that of 

thermal heat flux. 

Fig 5. Distribution of electro-thermal heat flux along 

the length of the wires (x0/L= 0.5, I = 2A) 

 

Fig. 4: Temperature distribution along the length of the 

wire with: (a) Cu-Al, x0/L = 0.5, (b) different junction 

points of Cu-Al 

 x0/L= 0.25 

x0/L= 0.50 

x0/L= 0.75 

 

(a) 

(b) 



© ICME2011  AM-012 5 

 

     Finally, the influence of various parameters of interest 

on the thermal behaviour of the bi-metallic wire having 

the junction point, x0/L=0.5 has been investigated, which 

is shown in figure 6.  Figure 6(a) shows the influence of 

the amount of supplying current on the temperature 

distribution along the wire. For a uniform wire of fixed 

length, the maximum temperature within the wire is 

found to increase quite significantly as we increase the 

amount of current. Similar thermal response is observed, 

when the cross-sectional area of the wire is varied, while 

the wire length and supplied current are kept constant 

(see figure 6(b)). For example, the maximum 

temperature within the wire is found to assume values 

from 320 to 350K when the diameter was changed from 

0.6 to 0.4 mm. Further, the temperature within the wire is 

found to increase with the increase of wire length, even 

though   all other relevant parameters are kept constant in 

the analysis, the results of which are illustrated in figure 

6(c). This is because, as the length of the wire is 

increased, the electrical resistance to current flow is 

increased, which eventually leads to higher electrical 

potential. This higher electrical potential causes the heat 

generation term in the governing equation to assume 

higher value, as the heat generation term maintains a 

nonlinear relationship with the electrical potential.   

 

6. CONCLUSION 

    Electro-thermal response of a conducting wire of 

dissimilar materials has been analyzed taking into 

account the associated thermal conductivity as a function 

of temperature. The procedure of deriving the associated 

nonlinear governing differential equation of the 

electro-thermal problem has been outlined. It has been 

observed that the state of temperature as well as its 

distribution along the conducting wire of dissimilar 

materials differs significantly from those of the 

individual materials. The maximum temperature within 

the wire is also identified to be a function of the location 

of the junction point of the dissimilar materials. The 

influence of wire length, wire diameter and supplied 

current on the temperature rise is also found to be quite 

significant. Results of the analysis are claimed to be 

highly accurate and reliable and thus considered to be a 

valuable guide to performance evaluation as well as 

integrity assessment of metal lines used in modern 

microelectronic devices.  
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8. NOMENCLATURE 

Symbol Meaning Unit 

ρ   Electrical resistivity Ωm 

φ Electric potential V 

J 

k 

h 

 

Current density 

Thermal conductivity 

Convective heat transfer 

co-efficient 

Am
-2 

Wm
-1

K
-1

 

Wm
-2

K
-1 

 

Cp 

P 

g 

 

C 

d 

L 

Am 

 

q 

A 

T 

α 

Specific heat capacity 

Electro-thermal heat flux 

Volumetric internal heat 

generation 

Perimeter of wire 

Diameter of wire 

Length of wire 

Mechanical equivalent of 

heat 

Thermal heat flux 

Cross-sectional area of wire 

Temperature 

Material density 

KJKg
-1

°C
-1

 

Wm
-2

 

Jm
-3

 

 

m 

m 

m 

Jcal
-1 

 

Wm
-2 

m
2 

K 

Kgm
-3 
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